A randomized framework for discovery of heterogeneous mixtures
نویسندگان
چکیده
Mixture models are the term given to models that consist of a combination of independent functions creating the distribution of points within a set. We present a framework for automatically discovering and evaluating candidate models within unstructured data. Our abstraction of models enables us to seamlessly consider different types of functions as equally possible candidates. Our framework does not require an estimate of the number of underlying models, allows points to be probabilistically classified into multiple models or identified as outliers, and includes a few parameters that an analyst (not typically an expert in statistical methods) may use to adjust the output of the algorithm. We give results from our framework with synthetic data and classic data.
منابع مشابه
A New Discovery about Inflow Control Devices in Controlling Water and Increasing Oil Recovery
Inflow control devices (ICD), which prevent water breakthrough by controlling the inflow profile of a well, have been used successfully in many oilfields. This paper will introduce a new discovery and an unsuccessful example. Moreover, this paper investigates meticulously and thoroughly to find the application conditions of the new discovery. Based on permeability rush coefficient and permeabil...
متن کاملWeighted-HR: An Improved Hierarchical Grid Resource Discovery
Grid computing environments include heterogeneous resources shared by a large number of computers to handle the data and process intensive applications. In these environments, the required resources must be accessible for Grid applications on demand, which makes the resource discovery as a critical service. In recent years, various techniques are proposed to index and discover the Grid resource...
متن کاملThe Kinetics of Enzyme Mixtures
Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011